Hydraulic tortuosity in arbitrary porous media flow.

نویسندگان

  • Artur Duda
  • Zbigniew Koza
  • Maciej Matyka
چکیده

Tortuosity (T) is a parameter describing an average elongation of fluid streamlines in a porous medium as compared to free flow. In this paper several methods of calculating this quantity from lengths of individual streamlines are compared and their weak and strong features are discussed. An alternative method is proposed, which enables one to calculate T directly from the fluid velocity field, without the need of determining streamlines, which greatly simplifies determination of tortuosity in complex geometries, including those found in experiments or three-dimensional computer models. Based on numerical results obtained with this method, (a) a relation between the hydraulic tortuosity of an isotropic fibrous medium and the porosity is proposed, (b) a relation between the divergence rate of T with the system size at percolation porosity and the scaling of the most probable traveling length at bond percolation is found, and (c) a range of porosities for which the shape factor is constant is identified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of pore-scale random porous media using lattice boltzmann method

The permeability and tortuosity of pore-scale two and three-dimensional random porous media were calculated using the Lattice Boltzmann method (LBM). Effects of geometrical parameters of medium on permeability and tortuosity were investigated as well. Two major models of random porous media were reconstructed by computerized tomography method: Randomly distributed rectangular obstacles in a uni...

متن کامل

An experimental study on hydraulic behavior of free-surface radial flow in coarse-grained porous media

The equations of fluids in porous media are very useful in designing the rockfill and diversion dams, gabions, breakwaters and ground water reserves. Researches have been showed that the Forchheimer equation is not sufficient for the analysis of hydraulic behavior of free-surface radial flows; because, in these flows, in addition to the hydraulic gradient and velocity, the variable of radius is...

متن کامل

Ja n 20 08 Tortuosity – porosity relation in the porous media flow

We study numerically the tortuosity–porosity relation in a microscopic model of a porous medium arranged as a collectin of freely overlapping squares. It is demonstrated that the finite-size effects and the discretization errors, which were ignored in previous studies, may cause significant underestimation of tortuosity. The simple tortuosity calculation method proposed here eliminates the need...

متن کامل

On the Performance of Different Empirical Loss Equations for Flow Through Coarse Porous Media (RESEARCH NOTE)

In this paper, the empirical equations that estimate hydraulic parameters for non-linear flow through coarse porous media are evaluated using a series of independent data collected in the laboratory. In this regard, three different relatively uniform soils ranging in size from 8.5 to 27.6 mm have been selected and three random samples drawn from each material. The physical characteristics such ...

متن کامل

Tortuosity-porosity relation in porous media flow.

We study numerically the tortuosity-porosity relation in a microscopic model of a porous medium arranged as a collection of freely overlapping squares. It is demonstrated that the finite-size, slow relaxation and discretization errors, which were ignored in previous studies, may cause significant underestimation of tortuosity. The simple tortuosity calculation method proposed here eliminates th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 84 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2011